Ansys Submission to 1st AIAA Transition Modeling Prediction Workshop

<u>Krishna Zore</u>, Shoaib Shah, Alexey Matyushenko (NTS), Florian Menter, John Stokes

Date: 21-22 January 2021, AIAA SciTech Forum.

Outline

- Solver and transition model
- Summary of results and key observations
 - Case 0 Turbulence model verification
 - Case 1 Flat Plate
 - Case 2 2D Airfoil
 - Case 4 NLF CRM
 - Case 4A: Grid Resolution Study with Transition, α =1.98°
 - Case 4B: α-Sweep Study with Transition
 - Case 4C: α-Sweep Study, Fully Turbulent
- Summary and Outlook

Ansys Fluent Solver

General description

- Cell-centered finite volume method
- Pressure and density-based solution methods
- Selection of p-v coupling, spatial discretization and gradient calculation options
- Pseudo-transient and CFL-based steady-state solution advancement
- Various initialization options
- Full suite of turbulence models (RANS, RSM, LES, hybrid RANS-LES, ...)
- Broad range of additional physics
 - CHT, non-equilibrium thermodynamics, chemical reactions, radiation, multi-phase, ...
- Turbulence transition model applied in all workshop cases:
 - Two-equation SST turbulence model with two-equation $\gamma\text{-Re}_\theta$ model for laminar-turbulent transition
 - a.k.a. Langtry-Menter 4-equation Transitional SST Model ("SST-2003-LM2009")
 - Default Fluent SST model with Kato-Launder production limiter $P_k=\mu_t\Omega S-rac{2}{3}
 ho k\delta_{ij}rac{\partial u_i}{\partial x}$ ("SST-KL")

Case 0 – Turbulence Model Verification

- Channel with span-wise varying bump on surface
- Fully turbulent flow with the default Fluent SST
- Grid-converged results consistent with reference NASA results

Case 1 – Flat Plate

 Grid resolution study on smooth, flat plate with variation of inlet turbulence conditions

- Case 1A (T3A): Tu = 5.855%, $v_t/v = 11.9$

- Case 1B (T3B): Tu = 7.216%, $v_t/v = 99$

Grid-converged results

The workshop-provided computational grids are used

Grid	Grid-1	Grid-2	Grid-3	Grid-4	Grid-5
X x Y (Nodes)	45 x 25	89 x 49	177 x 97	353 x 193	705 x 385

Case 1 – Flat Plate

- Observation: Effect of (sensitivity to) inlet turbulence Case1A (T3A)
 - ERCOFTAC database
 - Noticeable shift in transition onset location
 - Smaller effect on freestream turbulence along length of plate

Case 2: Flow Around an NLF(1)-0416 Airfoil (2D)

- Compressible Flow
 - Re = 4.10^6 , Ma = 0.1, T = 300K, Pr=0.71
- Wind tunnel computational domain with rotating airfoil and experimental height (H/C = 3.75)
 - Two non-overlapping subdomains
 - Rotating part with airfoil (rotation point: X/C=0.25)
 - Static part in the wind tunnel
- Sustaining terms are used to ensure T_u=0.15% on the airfoil leading edge

Case 2: Computational Grids and Grid Convergence Study

- Ansys-created grids
 - Structured grid around the airfoil and in the tunnel
 - Unstructured hexahedral grid near the static-rotating interface

Grid	Grid-1	Grid-2	Grid-3
N cells	152 570	357 559	1 162 970

- Results on all the grids agree with each other
- Main results are presented for Grid-2

- 1 degree grid step on the interface
- 1:1 connection for the integervalued angle of attack

- For all the grids
 - $\Delta Y^{+}_{1,\text{max}} < 1$
 - ER =1.08 (Expansion ratio) in wallnormal direction

Case 2: Comparison Results with the Experimental Data

Transition location

- γ -Re_{θ}-SST model delays transition prediction on the upper surface
 - The model tends to predict bubble transition instead of natural transition

Pressure description

 Pressure distribution prediction in a good agreement with the experimental data

Aerodynamic forces

- The model slightly underpredicts C_d
 - The most possible reason is the delay of the transition prediction on the upper surface

Reference experimental paper: NASA TP 1861 https://ntrs.nasa.gov/citations/19810015487

α

Case 2: Sensitivity to Inlet Turbulence Characteristics

• The solution becomes insensitive to freestream eddy viscosity ratio and freestream with $T_u < 0.2\%$

Case 4: CRM-NLF Geometry

- Case 4A: Grid-resolution study with transition
- Case 4B: α-sweep using medium-resolution grid
- Case 4C: Grid-resolution study fully turbulent
- Meshes
 - Workshop-provided (prism-tet)
 - Ansys-created (structured hex)
 - Based on IGES model, scaled to tunnel model in Ansys SpaceClaim

	Nr. of cells
Coarse prism-tet (Tmesh8)	7,008,758
Medium prism-tet (Tmesh12)	21,164,168
Fine prism-tet (Tmesh16)	47,367,515
Hex	14,201,856

- Observation on integral quantities on workshop-provided prism-tet meshes
 - Not yet achieved grid convergence
 - Noticeable impact of corner flow and curvature corrections
 - Curvature correction (CC) for SST based on Spalart-Shur Correction Term $f_{rotation} = (1 + c_{r1}) \frac{2r^*}{1 + r^*} [1 c_{r3} tan^{-1}(c_{r2}\tilde{r})] c_{r1}$, $P_k \rightarrow P_k \cdot f_r$
 - P. E. Smirnov and F. R. Menter. "Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term". ASME Paper GT 2008-50480. Berlin, Germany. 2008
 - Quadratic non-linear algebraic corner flow correction (CFC) to reduce corner separation $\overline{u_i u_j} = \frac{2}{3} k \delta_{ij} 2v_t S_{ij} C_{corner} \frac{1.2v_t}{MAX \left(0.3\omega, \sqrt{(S^2 + \Omega^2)/2}\right)} (S_{ik}\Omega_{kj} \Omega_{ik}S_{kj})$
 - Based on P. R. Spalart. "Strategies for Turbulence Modelling and Simulations". International Journal of Heat and Fluid Flow. 21. 3. 252–263. 2000

- Experiment
- Observation of surface intermittency on workshop-provided prism-tet meshes
 - Jaggedness of transition location along wingspan
 - Larger laminar region on fine mesh

Note: images shown are with corner-flow and curvature correction

• Transition line estimation on workshop-provided prism-tet meshes

No significant visible impact on transition location from correction terms

- Differences visible at trailing edge wing-body juncture
- As expected, and intended, reduced extent of separation region

Pressure coefficient comparison with experimental data

Figure 6.1 Planform View of Wing Upper Surface Showing Pressure Port Rows.

- Observation on integral quantities on workshop-provided medium mesh, with and without curvature and corner flow corrections
 - Correct trends
 - Slight difference in slopes for C_L and C_D, larger difference for C_M

- Comparison between results on prism-tet (workshop-provided medium) mesh and structured hex (Ansys) mesh, both with curvature and corner flow corrections
 - Similar trends, some offset in all integral quantities
 - Lift slope closer to experiment with hex mesh

• Minimal shift in laminar region for α range medium prism-tet mesh **Experiment** $\alpha = 1.44 [deg]$ - $\alpha = 1.98 [deg]$ $\alpha = 2.46 [deg]$ $\alpha = 2.93 [deg]$ **Pressure Side Suction side**

• Comparison: medium prism-tet mesh vs. hex mesh

• Comparison: medium prism-tet mesh vs. hex mesh - Delayed and smoother transition line with structured hex mesh **Experiment** prism-tet mesh, $\alpha = 2.93$ [deg] hex mesh, $\alpha = 2.93$ [deg] **Pressure Side Suction side**

Case 4C: α-Sweep Study, Fully Turbulent

- Comparison transition and fully turbulent results on structured hex (Ansys) mesh, both with curvature and corner flow corrections
 - Shift of integral C_L and C_D closer to experiment
 - Further investigation needed

Summary and Outlook

- Verification Case submitted with Fluent SST model
- Test Cases 1, 2, and 4 submitted with Fluent SST- γ -Re $_{\theta}$ model
- Several overall conclusions and observations from NLF CRM test case
 - Results on NLF CRM model indicate grid convergence is not yet achieved with current meshes
 - Need to take care when looking at integral quantities alone
 - E.g. exclusion of transition gives 'better' results
 - Difficult to isolate effect of transition from other phenomena in NLF CRM flow
 - E.g. potential interaction between transition and corner separation at wing-body juncture
 - Large uncertainty in experimental results

Outlook

- Effect of free stream turbulence levels (intensity, viscosity ratio)
- Comparison with other transition models (one equation γ-model, algebraic model)
- Incorporation of correlation to account for transition due to crossflow
- Further mesh refinement and/or mesh adaption

Ansys

Additional Slides

Ansys

Case 4B: α -Sweep Study, Pressure Coefficient Comparison, α =1.44°

Figure 6.1 Planform View of Wing Upper Surface Showing Pressure Port Rows.

Case 4B: α -Sweep Study, Pressure Coefficient Comparison, α =1.93°

Figure 6.1 Planform View of Wing Upper Surface Showing Pressure Port Rows.

Case 4B: α -Sweep Study, Pressure Coefficient Comparison, α =2.46°

Figure 6.1 Planform View of Wing Upper Surface Showing Pressure Port Rows.

Case 4B: α -Sweep Study, Pressure Coefficient Comparison, α =2.93°

Figure 6.1 Planform View of Wing Upper Surface Showing Pressure Port Rows.

